您目前所在的位置:首页 - 期刊简介 - 详细页面

铁道科学与工程学报

JOURNAL OF RAILWAY SCIENCE AND ENGINEERING

Vol. 17    No. 3    June 2007

[PDF Download]    

    

Numerical simulation of mold-temperature-control solidification
YOU Dong-dong(游东东), SHAO Ming(邵 明),
LI Yuan-yuan(李元元), ZHOU Zhao-yao(周照耀)

Department of Mechanical Engineering, South China University of Technology, Guangzhou 510640, China

Abstract:A finite element method(FEM) for the numerical simulation of the columnar part of the mould-temperature-control solidification(MTCS) process was presented. The latent heat was taken into account and 3D transient heat transfer analysis was carried out by using the developed FEM software. The relative errors between the numerical and experimental data are less than 6%. Three MTCS cases were computed with this method. The first case only opens the cooling channels in the bottom of the mold. The second case individually controls the separate 7 groups of cooling channels by giving 7 control points. When the temperature of a control point reaches the preset value of 400℃, the corresponding channel will be opened. The third case opens all the cooling channels at the same time. The results indicate that in the second case, the solid-liquid interface keeps near-planar. The growth velocity of the solid-liquid interface is 0.3−0.4 mm/s, which is greater than 0.1−0.3 mm/s of the first case, performing better than the others. Thus the forming quality and efficiency part interior can be improved by mold-temperature-control and the numerical model is validated. The numerical simulation of MTCS can provide an available tool for the advanced investigation on the defect improvement and the crystal’s quality.

 

Key words: mold-temperature-control solidification; columnar part; numerical simulation; solid-liquid interface

ISSN 1672-7029
CN 43-1423/U

主管:中华人民共和国教育部 主办:中南大学 中国铁道学会 承办:中南大学
湘ICP备09001153号 版权所有:《铁道科学与工程学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市韶山南路22号 邮编:410075
电 话:0731-82655133,82656174   传真:0731-82655133   电子邮箱:jrse@mail.csu.edu.cn