您目前所在的位置:首页 - 期刊简介 - 详细页面

铁道科学与工程学报

JOURNAL OF RAILWAY SCIENCE AND ENGINEERING

Vol. 19    Special 1    September 2009

[PDF Download]    [Flash Online]

    

Effective tool design of three-rank form as precision removal-process of ITO thin-films
Pai-shan PA

Digital Content Design, Graduate School of Toy and Game Design,
National Taipei University of Education, Taipei 10671, China

Abstract:A new effective tool design of three-rank form of electroremoval was present using a precision recycle system offering faster performance in removing the indium-tin-oxide(ITO) thin-films on color filter surface of displays. Higher electric power is not required since the three-rank form tool is adopted as a feeding mode to reduce the response area. The low yield of ITO persists throughout the entire semiconductor production process. By establishing a recycle process of ultra-precise removal of the thin-film nanostructure, defective products in the optoelectronic semiconductors industry can be effectively recycled, decreasing both production costs and pollution. A 5th generation TFT-LCD was used. The design features of the removal processes for the thin-films and the tool design of three-rank form were of major interest. For the precision removal processes, a pulsed current can improve the effect of dreg discharge and contributes to the achievement of a fast workpiece (displays’ color filter) feed rate, but raises the current rating. High flow velocity of the electrolyte with a high rotational speed of the tool electrodes elevates the ITO removal effect. A displays’ color filter with a fast feed rate is combined with enough electric power to provide highly effective removal. A small thickness of the rank and a small arc angle of the negative-electrode correspond to a higher removal rate for ITO-film. An effective three-rank form negative-electrode provides larger discharge mobility and better removal effect. It only needs a short period of time to remove the ITO easily and cleanly.

 

Key words: three-rank form; semiconductor; precision recycle; ITO; thin-films; tool design

ISSN 1672-7029
CN 43-1423/U

主管:中华人民共和国教育部 主办:中南大学 中国铁道学会 承办:中南大学
湘ICP备09001153号 版权所有:《铁道科学与工程学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市韶山南路22号 邮编:410075
电 话:0731-82655133,82656174   传真:0731-82655133   电子邮箱:jrse@mail.csu.edu.cn