您目前所在的位置:首页 - 期刊简介 - 详细页面

铁道科学与工程学报

JOURNAL OF RAILWAY SCIENCE AND ENGINEERING

第13卷    第1期    总第70期    2016年1月

[PDF全文下载]    [Flash在线阅读]

    

文章编号:1672-7029(2016)01-0181-06
基于无偏灰色Verhulst模型的铁路货运量预测研究
安永娥,鲍学英,王起才

(兰州交通大学土木工程学院,甘肃兰州 730070)

摘 要: 铁路工程项目投资和效益的控制,铁路运输发展战略的制定以及铁路运输设施效益的提高都与铁路货运量密切相关,准确预测铁路货运量具有重要意义。根据无偏GM(1,1)模型直接建模法的思想对传统灰色Verhulst进行改进,即对原始序列作倒数生成,运用新生成的序列建立模型,便可得到无偏灰色Verhulst模型。改进后的模型消除了灰色Verhulst模型自身固有的偏差,用此模型预测兰州至中川铁路货运量,结果表明,无偏灰色Verhulst模型比传统灰色Verhulst模型和GM(1,1)模型的预测精度更高。

 

关键字: 货运量;铁路工程;倒数生成;无偏灰色Verhulst模型

Railway freight volume forecasting based onunbiased grey Verhulst model
AN Yonge, BAO Xueying,WANGQicai

School of Civil Engineering ,Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract:Controls of investment and benefits in railway engineering project, formulation of development strategy of railway transportation and efficiency of railway transport facilities are the four parts that are closely related to the railway freight volume. It is of great significance to predict railway freight volume accurately. According to the idea of direct modeling method of unbiased GM(1,1) model, a traditional grey Verhulst is improved ,that is reciprocal sequence of original is generated and unbiased grey Verhulst model is built by the newly generated one. This model can eliminates the inherent bias and can be used to forecast freight volume from Lanzhou to zhongchuan. The results show that, compared with traditional grey Verhulst model and GM(1,1) model, predictions of unbiased grey Verhulst model are more accurate.

 

Key words: freight volume; railway engineering project; generated reciprocal; unbiased grey Verhulst model

ISSN 1672-7029
CN 43-1423/U

主管:中华人民共和国教育部 主办:中南大学 中国铁道学会 承办:中南大学
湘ICP备09001153号 版权所有:《铁道科学与工程学报》编辑部
------------------------------------------------------------------------------------------
地 址:湖南省长沙市韶山南路22号 邮编:410075
电 话:0731-82655133,82656174   传真:0731-82655133   电子邮箱:jrse@mail.csu.edu.cn